Files
school_archives/OSU Coursework/CS 261 - Data Structures/Assignment 5/dynamicArray.c

573 lines
12 KiB
C

/* dynArr.c: Dynamic Array implementation. */
#include <assert.h>
#include <stdlib.h>
#include <stdio.h>
#include "dynamicArray.h"
struct DynArr
{
TYPE *data; /* pointer to the data array */
int size; /* Number of elements in the array */
int capacity; /* capacity ofthe array */
};
struct bag
{
struct DynArr *dynArr;
};
/* ************************************************************************
Dynamic Array Functions
************************************************************************ */
/* Initialize (including allocation of data array) dynamic array.
param: v pointer to the dynamic array
param: cap capacity of the dynamic array
pre: v is not null
post: internal data array can hold capacity elements
post: v->data is not null
*/
void _initDynArr(DynArr *v, int capacity)
{
assert(capacity > 0);
assert(v!= 0);
v->data = malloc(sizeof(TYPE) * capacity);
assert(v->data != 0);
v->size = 0;
v->capacity = capacity;
}
/* Allocate and initialize dynamic array.
param: cap desired capacity for the dyn array
pre: none
post: none
ret: a non-null pointer to a dynArr of cap capacity
and 0 elements in it.
*/
DynArr* createDynArr(int cap)
{
DynArr *r;
assert(cap > 0);
r = malloc(sizeof( DynArr));
assert(r != 0);
_initDynArr(r,cap);
return r;
}
/* Deallocate data array in dynamic array.
param: v pointer to the dynamic array
pre: v is not null
post: d.data points to null
post: size and capacity are 0
post: the memory used by v->data is freed
*/
void freeDynArr(DynArr *v)
{
assert(v!=0);
if(v->data != 0)
{
free(v->data); /* free the space on the heap */
v->data = 0; /* make it point to null */
}
v->size = 0;
v->capacity = 0;
}
/* Deallocate data array and the dynamic array ure.
param: v pointer to the dynamic array
pre: v is not null
post: the memory used by v->data is freed
post: the memory used by d is freed
*/
void deleteDynArr(DynArr *v)
{
assert (v!= 0);
freeDynArr(v);
free(v);
}
/* Resizes the underlying array to be the size cap
param: v pointer to the dynamic array
param: cap the new desired capacity
pre: v is not null
post: v has capacity newCap
*/
void _dynArrSetCapacity(DynArr *v, int newCap)
{
int i;
TYPE *oldData;
int oldSize = v->size;
oldData = v->data;
printf("========Resizing========\n");
/* Create a new dyn array with larger underlying array */
_initDynArr(v, newCap);
for(i = 0; i < oldSize; i++){
v->data[i] = oldData[i];
}
v->size = oldSize;
/* Remember, init did not free the original data */
free(oldData);
#ifdef ALTERNATIVE
int i;
/* Create a new underlying array*/
TYPE *newData = (TYPE*)malloc(sizeof(TYPE)*newCap);
assert(newData != 0);
/* copy elements to it */
for(i = 0; i < v->size; i++)
{
newData[i] = v->data[i];
}
/* Delete the oldunderlying array*/
free(v->data);
/* update capacity and size and data*/
v->data = newData;
v->capacity = newCap;struct Task {
char description[TASK_DESC_SIZE]; /* description of the task */
int priority; /* task priority */
};
#endif
}
/* Get the size of the dynamic array
param: v pointer to the dynamic array
pre: v is not null
post: none
ret: the size of the dynamic array
*/
int sizeDynArr(DynArr *v)
{
assert(v!=0);
return v->size;
}
/* Adds an element to the end of the dynamic array
param: v pointer to the dynamic array
param: val the value to add to the end of the dynamic array
pre: the dynArry is not null
post: size increases by 1
post: if reached capacity, capacity is doubled
post: val is in the last utilized position in the array
*/
void addDynArr(DynArr *v, TYPE val)
{
assert(v!=0);
/* Check to see if a resize is necessary */
if(v->size >= v->capacity)
_dynArrSetCapacity(v, 2 * v->capacity);
v->data[v->size] = val;
v->size++;
}
/* Get an element from the dynamic array from a specified position
param: v pointer to the dynamic array
param: pos integer index to get the element from
pre: v is not null
pre: v is not empty
pre: pos < size of the dyn array and >= 0
post: no changes to the dyn Array
ret: value stored at index pos
*/
TYPE getDynArr(DynArr *v, int pos)
{
assert(v!=0);
assert(pos < v->size);
assert(pos >= 0);
return v->data[pos];
}
/* Put an item into the dynamic array at the specified location,
overwriting the element that was there
param: v pointer to the dynamic array
param: pos the index to put the value into
param: val the value to insert
pre: v is not null
pre: v is not empty
pre: pos >= 0 and pos < size of the array
post: index pos contains new value, val
*/
void putDynArr(DynArr *v, int pos, TYPE val)
{
assert(v!=0);
assert(pos < v->size);
assert(pos >= 0);
v->data[pos] = val;
}
/* Swap two specified elements in the dynamic array
param: v pointer to the dynamic array
param: i,j the elements to be swapped
pre: v is not null
pre: v is not empty
pre: i, j >= 0 and i,j < size of the dynamic array
post: index i now holds the value at j and index j now holds the value at i
*/
void swapDynArr(DynArr *v, int i, int j)
{
TYPE temp;
assert(v!=0);
assert(i < v->size);
assert(j < v->size);
assert(i >= 0);
assert(j >= 0);
temp = v->data[i];
v->data[i] = v->data[j];
v->data[j] = temp;
}
/* Remove the element at the specified location from the array,
shifts other elements back one to fill the gap
param: v pointer to the dynamic array
param: idx location of element to remove
pre: v is not null
pre: v is not empty
pre: idx < size and idx >= 0
post: the element at idx is removed
post: the elements past idx are moved back one
*/
void removeAtDynArr(DynArr *v, int idx){
int i;
assert(v!= 0);
assert(idx < v->size);
assert(idx >= 0);
//Move all elements up
for(i = idx; i < v->size-1; i++){
v->data[i] = v->data[i+1];
}
v->size--;
}
/* ************************************************************************
Stack Interface Functions
************************************************************************ */
/* Returns boolean (encoded in an int) demonstrating whether or not the
dynamic array stack has an item on it.
param: v pointer to the dynamic array
pre: v is not null
post: none
ret: >0 if empty, otherwise 0
*/
int isEmptyDynArr(DynArr *v)
{
assert(v!= 0);
return !(v->size);
/* alternatively:
if(v->size == 0)
return 1;
else return 0;
*/
}
/* Push an element onto the top of the stack
param: v pointer to the dynamic array
param: val the value to push onto the stack
pre: v is not null
post: size increases by 1
if reached capacity, capacity is doubled
val is on the top of the stack
*/
void pushDynArr(DynArr *v, TYPE val)
{
assert(v!=0);
addDynArr(v, val);
}
/* Returns the element at the top of the stack
param: v pointer to the dynamic array
pre: v is not null
pre: v is not empty
post: no changes to the stack
*/
TYPE topDynArr(DynArr *v)
{
assert(v!=0);
assert(!isEmptyDynArr(v));
return v->data[v->size-1];
}
/* Removes the element on top of the stack
param: v pointer to the dynamic array
pre: v is not null
pre: v is not empty
post: size is decremented by 1
the top has been removed
*/
void popDynArr(DynArr *v)
{
assert(v!=0);
assert(! isEmptyDynArr(v));
v->size--;
}
/* ************************************************************************
Bag Interface Functions
************************************************************************ */
/* Returns boolean (encoded as an int) demonstrating whether or not
the specified value is in the collection
true = 1
false = 0
param: v pointer to the dynamic array
param: val the value to look for in the bag
pre: v is not null
pre: v is not empty
post: no changes to the bag
*/
int containsDynArr(DynArr *v, TYPE val)
{
int i = 0;
assert(v!=0);
assert(!isEmptyDynArr(v));
for(i = 0; i < sizeDynArr(v); i++)
if(compare(v->data[i], val) == 0)
return 1;
return 0;
}
/* Removes the first occurrence of the specified value from the collection
if it occurs
param: v pointer to the dynamic array
param: val the value to remove from the array
pre: v is not null
pre: v is not empty
post: val has been removed
post: size of the bag is reduced by 1
*/
void removeDynArr(DynArr *v, TYPE val)
{
int i = 0;
assert(v!=0);
assert(!isEmptyDynArr(v));
assert(containsDynArr(v,val)); /* Design decision: Error if they try to remove something not in there! */
for(i = 0; i < sizeDynArr(v); i++)
if(compare(v->data[i], val) == 0)
{
removeAtDynArr(v,i);
break;
}
}
/* Copy elements from a dynamic array to another dynamic array
param: source pointer to the source dynamic array
param: destination pointer to the destination dynamic array
pre: s is not null and s is not empty
post: destination is initialized
post: the elements from source are copied to destination
*/
void copyDynArr(DynArr *source, DynArr *destination)
{
int i;
assert(source->size > 0);
_initDynArr(destination, source->capacity);
/* copy elements to destination array */
for(i = 0; i < source->size; i++)
destination->data[i] = source->data[i];
destination->size = source->size;
}
/* ************************************************************************
Heap-based Priority Queue Implementation
************************************************************************ */
/* internal function prototypes */
int _smallerIndexHeap(DynArr *heap, int i, int j);
void _adjustHeap(DynArr *heap, int max, int pos);
/* Get the index of the smaller node between two nodes in a heap
param: heap pointer to the heap
param: i index of one node
param: j index of other node
pre: i < size and j < size
ret: the index of the smaller node
*/
int _smallerIndexHeap(DynArr *heap, int i, int j)
{
/* FIXME */
/* DONE */
assert(i < heap->size);
assert(j < heap->size);
if(((struct Task*)heap->data[i])->priority > ((struct Task*)heap->data[j])->priority){
return j;
}else{
return i;
}
}
/* Get the first node, which has the min priority, from the heap
param: heap pointer to the heap
pre: heap is not empty
ret: value of first node
*/
TYPE getMinHeap(DynArr *heap)
{
/* FIXME */
/* DONE */
assert(heap != 0);
return heap->data[0];
}
/* Add a node to the heap
param: heap pointer to the heap
param: node node to be added to the heap
pre: heap is not null
post: node is added to the heap
*/
void addHeap(DynArr *heap, TYPE val)
{
/* FIXME */
/* DONE */
int pos;
int parent;
assert(heap != 0);
addDynArr(heap, val);
pos = sizeDynArr(heap)-1;
while(pos != 0){
parent = (pos -1)/2;
if(((struct Task*)heap->data[pos])->priority < ((struct Task*)heap->data[parent])->priority){
swapDynArr(heap, pos, parent);
pos = parent;
}else{
return;
}
}
}
/* Adjust heap to maintain heap property
param: heap pointer to the heap
param: max index to adjust up to (but not included)
param: pos position index where the adjustment starts
pre: max <= size
post: heap property is maintained for nodes from index pos to index max-1 (ie. up to, but not including max)
*/
void _adjustHeap(DynArr *heap, int max, int pos)
{
/* FIXME */
/* DONE */
int leftChild = 2*pos + 1;
int rightChild = 2*pos + 2;
if(rightChild < max){
int smallestindex = _smallerIndexHeap(heap, leftChild, rightChild);
if(((struct Task*)heap->data[pos])->priority > ((struct Task*)heap->data[smallestindex])->priority){
swapDynArr(heap, pos, smallestindex);
_adjustHeap(heap, max, smallestindex);
}
}else if(leftChild < max){
if(((struct Task*)heap->data[pos])->priority > ((struct Task*)heap->data[leftChild])->priority){
swapDynArr(heap, pos, leftChild);
_adjustHeap(heap, max, leftChild);
}
}
}
/* Remove the first node, which has the min priority, from the heap
param: heap pointer to the heap
pre: heap is not empty
post: the first node is removed from the heap
*/
void removeMinHeap(DynArr *heap)
{
/* FIXME */
/* DONE */
int last = sizeDynArr(heap)-1;
//assert(last !=0);
putDynArr(heap, 0, getDynArr(heap, last));
removeAtDynArr(heap, last);
_adjustHeap(heap, last, 0);
}
/* builds a heap from an arbitrary dynArray
param: v dynamicArray
pre: v is not empty
post: v is a proper heap
*/
void _buildHeap(DynArr *heap)
{
/* FIXME */
/* DONE */
int max = sizeDynArr(heap);
for(int i = max/2 -1 ; i >=0 ; i--){
_adjustHeap(heap, max, i);
}
}
/*
In-place sort of the heap
param: heap pointer to the heap
pre: heap is not empty
post: the dynArr is in reverse sorted order
*/
void sortHeap(DynArr *heap)
{
/* FIXME */
/* DONE */
_buildHeap(heap);
for(int i = sizeDynArr(heap)-1 ; i > 0 ; i--){
swapDynArr(heap, 0, i);
_adjustHeap(heap, i, 0);
}
}