Added new coursework, cleaned up structure

This commit is contained in:
2017-11-29 10:11:54 -08:00
parent b300c76103
commit 808a0f1724
345 changed files with 126653 additions and 0 deletions

View File

@@ -0,0 +1,18 @@
cmake_minimum_required(VERSION 2.8.3)
project(rob456_hw2)
## Find catkin macros and libraries
## if COMPONENTS list like find_package(catkin REQUIRED COMPONENTS xyz)
## is used, also find other catkin packages
find_package(catkin REQUIRED COMPONENTS
stage_ros
geometry_msgs
roscpp
rospy
)
catkin_package()
include_directories(
${catkin_INCLUDE_DIRS}
)

View File

@@ -0,0 +1,7 @@
<launch>
<node pkg="stage_ros" type="stageros" name="simulator" args="$(find rob456_hw2)/worlds/manyDots.world"/>
<node pkg="rob456_hw2" type="hw2.py" name="hw2" output="screen">
<param name="goalX" value="20" />
<param name="goalY" value="-20" />
</node>
</launch>

View File

@@ -0,0 +1,58 @@
<?xml version="1.0"?>
<package>
<name>rob456_hw2</name>
<version>0.0.0</version>
<description>ROB456 HW2</description>
<!-- One maintainer tag required, multiple allowed, one person per tag -->
<!-- Example: -->
<!-- <maintainer email="jane.doe@example.com">Jane Doe</maintainer> -->
<maintainer email="rob456@todo.todo">rob456</maintainer>
<!-- One license tag required, multiple allowed, one license per tag -->
<!-- Commonly used license strings: -->
<!-- BSD, MIT, Boost Software License, GPLv2, GPLv3, LGPLv2.1, LGPLv3 -->
<license>BSD</license>
<!-- Url tags are optional, but mutiple are allowed, one per tag -->
<!-- Optional attribute type can be: website, bugtracker, or repository -->
<!-- Example: -->
<!-- <url type="website">http://wiki.ros.org/pioneer_delivery</url> -->
<!-- Author tags are optional, mutiple are allowed, one per tag -->
<!-- Authors do not have to be maintianers, but could be -->
<!-- Example: -->
<!-- <author email="jane.doe@example.com">Jane Doe</author> -->
<!-- The *_depend tags are used to specify dependencies -->
<!-- Dependencies can be catkin packages or system dependencies -->
<!-- Examples: -->
<!-- Use build_depend for packages you need at compile time: -->
<!-- <build_depend>message_generation</build_depend> -->
<!-- Use buildtool_depend for build tool packages: -->
<!-- <buildtool_depend>catkin</buildtool_depend> -->
<!-- Use run_depend for packages you need at runtime: -->
<!-- <run_depend>message_runtime</run_depend> -->
<!-- Use test_depend for packages you need only for testing: -->
<!-- <test_depend>gtest</test_depend> -->
<buildtool_depend>catkin</buildtool_depend>
<build_depend>geometry_msgs</build_depend>
<build_depend>stage_ros</build_depend>
<build_depend>roscpp</build_depend>
<build_depend>rospy</build_depend>
<run_depend>geometry_msgs</run_depend>
<run_depend>stage_ros</run_depend>
<run_depend>roscpp</run_depend>
<run_depend>rospy</run_depend>
<!-- The export tag contains other, unspecified, tags -->
<export>
<!-- Other tools can request additional information be placed here -->
</export>
</package>

View File

@@ -0,0 +1,181 @@
#!/usr/bin/env python
import rospy
import math
import tf
from tf.transformations import euler_from_quaternion
import message_filters
from pprint import pprint
import time
# The laser scan message
from sensor_msgs.msg import LaserScan
# The odometry message
from nav_msgs.msg import Odometry
# the velocity command message
from geometry_msgs.msg import Twist
# instantiate global variables "globalOdom"
globalOdom = Odometry()
# global pi - this may come in handy
pi = math.pi
def angle_between_points((x_1, y_1), (x_2, y_2)):
return math.atan2(y_2 - y_1, x_2 - x_1)
# method to control the robot
def callback(scan, odom):
# the odometry parameter should be global
global globalOdom
globalOdom = odom
# make a new twist message
command = Twist()
# Fill in the fields. Field values are unspecified
# until they are actually assigned. The Twist message
# holds linear and angular velocities.
command.linear.x = 0.0
command.linear.y = 0.0
command.linear.z = 0.0
command.angular.x = 0.0
command.angular.y = 0.0
command.angular.z = 0.0
# get goal x and y locations from the launch file
goalX = rospy.get_param('hw2/goalX', 0.0)
goalY = rospy.get_param('hw2/goalY', 0.0)
# find current (x,y) position of robot based on odometry
currentX = globalOdom.pose.pose.position.x
currentY = globalOdom.pose.pose.position.y
# find current orientation of robot based on odometry (quaternion coordinates)
xOr = globalOdom.pose.pose.orientation.x
yOr = globalOdom.pose.pose.orientation.y
zOr = globalOdom.pose.pose.orientation.z
wOr = globalOdom.pose.pose.orientation.w
# find orientation of robot (Euler coordinates)
(roll, pitch, yaw) = euler_from_quaternion([xOr, yOr, zOr, wOr])
# find currentAngle of robot (equivalent to yaw)
# now that you have yaw, the robot's pose is completely defined by (currentX, currentY, currentAngle)
currentAngle = yaw
# find laser scanner properties (min scan angle, max scan angle, scan angle increment)
maxAngle = scan.angle_max
minAngle = scan.angle_min
angleIncrement = scan.angle_increment
# find current laser angle, max scan length, distance array for all scans, and number of laser scans
currentLaserTheta = minAngle
maxScanLength = scan.range_max
distanceArray = scan.ranges
numScans = len(distanceArray)
# ######### My Modifications ##########
# Get the angle from the robot to the goal position
desired_angle = angle_between_points((currentX, currentY), (goalX, goalY))
# Precision variables
angle_offset = 0.05 # Handles how much deviance from our desired angle we can be
goal_precision = 0.1 # Sets how close to the goal is determined to be the actual goal
precision = 0.02 # Sets how forcefully we try to maintain a path
min_theta = desired_angle - angle_offset # Sets the min theta to be within from settings above
max_theta = desired_angle + angle_offset # Same but for max theta
abs_min_theta = abs(currentAngle - min_theta) # Get the absolute value of how far off we are, in regards to limits
abs_max_theta = abs(currentAngle - max_theta) # Same as previous
# If we've reached the goal, within our goal precision, stop the rover from moving
if abs(goalY - currentY) < goal_precision and abs(goalX - currentX) < goal_precision:
return
# Otherwise, make the rover move forward always
command.linear.x = 0.35
# Check if our current angle is within our precision for direction
# This is what sets the rover heading towards the goal
if abs_min_theta > precision and abs_max_theta > precision:
# If we're not, turn left or right depending on which limit we're closer to
if abs_max_theta > abs_min_theta:
command.angular.z = 0.25 # Counter-clockwise
else:
command.angular.z = -0.25 # Clockwise
# Sets up obstacle avoidance
num_scans = 400 # Set the number of samples around the center-forward of the rover's vision
threshold = 1.0 # Set a threshold for how close objects are allowed to be
results = ["Good" for _ in range(num_scans)] # Set up an array for the number of scans, all set to good
middle_point = numScans / 2 # Get the middle point for the scan information we have
# Get our limits for upper and lower scan boundaries based on the scan inputs and num_scans
lower_range = middle_point - (num_scans / 2)
upper_range = middle_point + (num_scans / 2)
position = 0 # Variable to keep track of the results array position
# Go through our scans in the range, and mark any that are out of bounds.
for current_scan in range(lower_range, upper_range):
if distanceArray[current_scan] < threshold:
results[position] = "Bad"
position += 1
# Split the results up into measurements from the left vs right side of the rover, counting how many sensor
# readings on each side were too close to an object
right_count = results[: (len(results) / 2) - 10].count("Bad")
left_count = results[(len(results) / 2) + 10:].count("Bad")
# Debug statements while testing
# print time.time()
# print "Left: %s Right: %s" % (left_count, right_count)
# Threshold for how many positions on one side of the rover need to be too close to an object before avoiding
count_thresh = 20
# How forcefully to turn the rover one direction or another when it is trying to avoid obstacles
increment = 0.8
# If either side of the rover has too many counts for an object being too closer
if left_count > count_thresh or right_count > count_thresh:
# Turn the rover left or right, depending on which side has more counts than the other
if left_count and right_count:
if left_count > right_count or right_count == left_count:
command.angular.z += -increment
else:
command.angular.z += increment
elif left_count:
command.angular.z += -increment
elif right_count:
command.angular.z += increment
# Send the commands
pub.publish(command)
# main function call
if __name__ == "__main__":
# Initialize the node
rospy.init_node('lab2', log_level=rospy.DEBUG)
# subscribe to laser scan message
sub = message_filters.Subscriber('base_scan', LaserScan)
# subscribe to odometry message
sub2 = message_filters.Subscriber('odom', Odometry)
# synchronize laser scan and odometry data
ts = message_filters.TimeSynchronizer([sub, sub2], 10)
ts.registerCallback(callback)
# publish twist message
pub = rospy.Publisher('cmd_vel', Twist, queue_size=10)
# Turn control over to ROS
rospy.spin()

View File

@@ -0,0 +1,71 @@
define block model
(
size [0.5 0.5 0.5]
gui_nose 0
)
define topurg ranger
(
sensor(
range [ 0.0 30.0 ]
fov 270.25
samples 1081
)
# generic model properties
color "black"
size [ 0.05 0.05 0.1 ]
)
define erratic position
(
size [0.35 0.35 0.25]
origin [-0.05 0 0 0]
gui_nose 0
drive "diff"
topurg(pose [ 0.050 0.000 0 0.000 ])
odom_error [0.00 0.00 0.00 0.00 0.00 0.00]
)
define floorplan model
(
# sombre, sensible, artistic
color "gray30"
# most maps will need a bounding box
boundary 1
gui_nose 0
gui_grid 0
gui_outline 0
gripper_return 0
fiducial_return 0
laser_return 1
)
# set the resolution of the underlying raytrace model in meters
resolution 0.005
interval_sim 100 # simulation timestep in milliseconds
window
(
size [ 745.000 448.000 ]
rotate [ 0.000 0.000 ]
scale 5
)
# load an environment bitmap
floorplan
(
name "manyDots"
bitmap "manyDots.pgm"
size [54.0 58.7 0.5]
pose [ 0 0.0 0 90.000 ]
)
# throw in a robot
erratic( pose [ -10.000 10.000 0 90.000 ] name "era" color "blue" localizaion "gps" localization_origin [0 0 0 0])