CS 331 Assignment #3: Sentiment Analysis

Out: May 26, 2017
Due: June 9, 2017, 17:00:00
Type: Team Assignment (Groups of 2 max)

Description

The goal of sentiment analysis is to determine the writer's attitude toward the topic about which they are writing.
It can be applied to text from reviews and survey responses (and perhaps even course evaluations!) to determine
whether the writer feels positively or negatively about the subject. In this assignment, you will predict the
sentiment sentences taken from Yelp reviews, using data from [1]. You will be using naive Bayes for this
classification problem. Given an input sentence, you are to determine whether a sentence is positive or negative.

File Format

You will be given two files in the same format. They are trainingSet.txt and testSet.txt. These files consist of
sentences in the following format:

Best restaurant ever. 1
Worst restaurant ever. 0

In general, the format of a line is "some text", "\t" (tab), classlabel. Note that the text may contain arbitrary
punctuation.

Pre-processing step

This step converts each sentence into a feature vector plus a class label that is read in by your Naive Bayes
algorithm. You will be representing each sentence as a "bag of words". The steps for this conversion as are
follows:

1. Strip the punctuation. You can remove apostrophes from words to make stripping the punctuation simpler
to do. You do not lose much accuracy by confusing edge cases like "wont" and "won't" in our data set.
This ambiguity also allows you to get the benefit of recognizing that common bouts of laziness like
"youre" and "you're" are meant to be the same word. You may also wish to ignore case (so that e.g. "great"
is the same as "Great" or "GREAT"). You will have some other choices here around numbers and symbols
in the text, but they shouldn't be critical to the performance of your classifier for these data.

2. Form the vocabulary. The vocabulary consists of the set of all the words that are in the training data. The
vocabulary will now be the features of your training data. Keep the vocabulary in alphabetical order to
help you with debugging your assignment.

3. Now, convert the training AND test data into a set of features. Let M be the size of your vocabulary. For
each sentence, you will convert it into a feature vector of size M+1. Each slot in that feature vector takes
the value of O or 1. For the first M slots, if the ith slot has the value 1, it means that the ith word in the
vocabulary is present in the sentence; otherwise, if it is O, then the ith word is not present in the sentence.
Most of the first M feature vector slots will be 0. Since you are keeping the vocabulary in alphabetical
order, the first feature will be the first word alphabetically in the vocabulary. The (M+1)th slot corresponds



to the class label. A 1 in this slot means the text is positive while a 0 in this slot means the text is negative.
We will refer to the "featurized" training data as the pre-processed training data.

4. Output the pre-processed training and testing data to two files called preprocessed_train.txt and
preprocessed_test.txt. The first line should contain the alphabetized words in the vocabulary, separated by
commas, followed by a dummy non-word called "classlabel". The lines that follow the vocabulary words
should be the featurized versions of the sentences in the training data, with the features separated by
commas. Your file should look something like:

aardvark ,almost,anticipate,...,classlabel
0,10,..0
10,1,..,1

Note that even though we are asking you to output the training data, the classification step should happen
right after the pre-processing step (just pass the preprocessed data directly to your classifier. Don't save it
out and reload it back in).

Classification step

Build a naive Bayes classifier as described in class.

1. In the training phase, the naive Bayes classifier reads in the training data along with the training labels and
learns the parameters used by the classifier

2. In the testing phase, the trained naive Bayes classifier classifies the data in the testSet.txt data file. Use the
preprocessed data you generated above.

3. Output the accuracy of the naive Bayes classifier by comparing the predicted class label of each sentence
in the test data to the actual class label. The accuracy is the number of correct predictions divided by the
total number of predictions.

You may output extra data (e.g. confusion matrices, incorrectly classified sentences) if you think it makes your
program's performance more clear, but we should be able to immediately identify and read the accuracy in your
output without effort.

A couple of hints:

e As mentioned, strip any punctuation and whitespace when you count and/or identify the words.

e Make sure that you follow the implementation hints given in the lecture. Specifically, do the probability
calculations in log space to prevent numerical instability. Also, use uniform Dirichlet priors to avoid zero
counts.

e The accuracy for the training data should be very good (>90%), we will not tell you the accuracy of the
test data.

Files

Here are the training and test data sets:

1. Training: trainingSet.txt
2. Test: testSet.txt

Results



Your results must be stored in a file called results.txt.

1. Run your classifier by training on training_text.txt then testing on training_text.txt. Report the accuracy in
results.txt (along with a comment saying what files you used for the training and testing data). In this
situation, you are training and testing on the same data. This is a sanity check: your accuracy should be
high i.e. > 90%

2. Run your classifier by training on training_text.txt then testing on test_text.txt. Report the accuracy in
results.txt (along with a comment saying what files you used for the training and testing data). We will not
be letting you know beforehand what your performance on the test set should be.

What to hand in

All of your source code and the results.txt file. Zip everything up with a zip program. To hand in your
assignment, go to the TEACH electronic handin site: https://secure.engr.oregonstate.edu:8000

1. Login to the TEACH system

2. Click on the "Submit Assignment" link on the left hand side

3. Select ProgAssn3 from the dropdown menu, hit submit query

4. Enter the path of your zip file. Hit Submit Query to hand everything in.

How the assignment will be marked

e Pre-processing step (25 points)
e Naive Bayes classifier (25 points)

We will be running your code, so please make sure it will run on the ENGR systems!

References

[1] Kotzias, D., Denil, M., de Freitas, N., and Smyth, Padhraic (2015). From Group to Individual Labels Using
Deep Features. In Proceedings of the 21st ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining (KDD '15).



