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Introduction

ARM based processors are some of the most common processors in use today. Their small form factor makes
them a pefect �t for use in embedded applications that require more than a low powered microcontroller
while still being space conscious. This, combined with their comparatively low power consumption in relation
to Intel or AMD, has helped forefront them for use in devices such as cell phones, tablets, medical devices,
point-of-sale systems, and many others. As such a common and popular processor type, one would expect
the processor's architecture to be unique, powerful, and easy to use. This paper will cover some of the
features of the ARM Version 7 architecture and how these features stack up against its x86 counterparts.

ARM History

The �rst ARM processor was released in 1985 by Acorn as a response to unmet needs of the company
for a low latency processor that didn't use the overly slow CISC instruction set. When it was released, it
outperformed the Intel 80286 processor that came out at roughly the same time while having signi�cantly
fewer transistors and costing sign�cantly less to manufacture [Ryzhyk, 2006]. This processer used what was
later called the verion one architecture. By 1990, Acorn paired with Apple to produce a RISC processor for
their Netwon PDA (using architecture version three), and spun o� a seperate company for this project under
the name ARM (Advanced RISC Machines), and focussed the company to the embedded market. As 2000
approached, highly advanced features began appearing on their version 5 architecture such as built in digital
signal processing capabilities [Levy, 2005]. Multi-processor enhancements were added in 2001, along with
virtualization options. Now on ARMv7, released in 2006, �oating point support was enhanced and has been
placed in uncountable numbers of devices. Over the years, their focus and tuning of the RISC architecture
and miniaturization have led to their growing success.

Instruction Set Design

CPU Design

The �rst thing to note about the ARMv7 architecture is that it uses RISC(Reduced Instruction Set Com-
puting), compared to the CISC (Complex Instruction Set Computer) design that Intel x86 uses. This means
that for those who are used to writing code for intel processors, you will most likely �nd youself having
to write more for ARM to acheive the same output. This is not necessarily a bad thing , and in fact has
the potential to be faster, as will be covered later as well as giving the programmer �ner control over how
computations are done. A noticeable change that makes light of this would be the appending of an �S�
character onto an instruction if you want it to set the cpu �ags based on the outcome for ARMv7. In x86,
this happens automatically (even if you'd prefer it not to), but in this case the programmer would be able
to choose whether or not they would actually want to set them.

Endianness

ARMv7 by default is a bi-endian architecture meaning that either the chip manufacturer or board designer
has control over whether the endianness of the processor will be little of big. Some manufacturers will
leave a pin available so the end designer can specify it based on the speci�c needs of a design. Others
come precon�gured with the endianness set interally. Processors using this architecture also have built in
instructions to reverse the endianness of data so it can easily communicate with other processors or devices
using alternate endian types with ease. Though ARMv7 is bi-endian, the default and most commonly used
endianness is little-endian [Limited, 2010].
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Registers and Data Types

This architecture uses 32 bit registers and can support data types down from an 8 bit byte up to a 64 bit
integer stored between two registers. There are a total of 16 32-bit registers [Clements, 2014], which coming
from intel's six (if you're lucky) is a welcome change. These registers are accessed using r0-r16 and support
the same kinds of operations and uses that x86 does with the exception that the registers normally do not
have as many pre-de�ned uses that have to be adhered to. You are able to de�ne all the registers used for
inputs, outputs, divisors, multipliers, shifters, etc.. for each instruction used, which when combined with
the overall larger number of registers means that coding can be much nicer and easier than x86. For those
ARMv7 processors that include the optional FPU, there would then be another 16 64-bit registers avaiable
just for �oating point operations, which again is very nice compared to Intel's eight.

Addressing and Addressing Modes

All version 7 ARM processors use 32 bit addressing, just the same as Intel processors [Limited, 2010]. The
addressing modes are also similar. ARMv7 has the ability to address data using direct and indirect adressing,
as well as loading immediates, with some slight variations compared to x86. Rather than having a single
command to move data into and out of registers and memory, they was x86 does, ARMv7 has not only a
di�erent mov operator for di�erent lengths of data, but it actually has seperate ones for moving data into
and out of those registers and memory spaces. To move data into registers, you have to use the instruction
�LDR� and to store what's currently in the register elsewhere, �STR�. Those two instructions have letter
modi�cations to declare the data size being moved, so �LDRB� would translate to �load a byte into the
register�. The same goes for the store instruction. Immediates are also slightly di�erent to use as they
require either a # or = sumbol in front of the number depending on which instruction is used. The �MOV�
instruction does exist in ARMv7, however, it's actually part of the instrucion extension set called Thumb2
and will only allow you to load bytes into registers [Limited, 2010]. In this case, you would use the pound
symbol to preface the immediate. Otherwise, LDR or STR should be used, depending on where you want it
to end up, and the immediate should be prefaced with the equals sign. Otherwise, the di�erences between
indirect/direct addressing in ARMv7 vs x86 are minimal. �LDR r0, r2� would load the contents of register
two into register zero. �LDR r0, [r2]� would load the value stored in the memory location pointed to by the
address stored in r2 into r0. To use scaling with indirect adressing, you have to use comma's rather than a
plus and minus signs. Therefore, �mov eax, [ebx-edx]� would instead be �LDR r0, [r1,-r2]� [Clements, 2014].

Common Mathematical Instructions

Most common arithmatic and bitwise instructions available on x86 processors are available on ARMv7
including, but not limited to ADD, SUB, MUL, AND, OR (ORR), and SHL (ROL) and all are as easy to
use as their x86 counterparts or even easier considering the free range you're allowed with ARMv7 register
usage as mentioned before. There is one common one that is missing however, and that is the division
instruction. Only a select few versions actually contain a hardware division unit, and those select few will
have the instruction but it is not the norm [Limited, 2010]. In order to do division on the rest, you have to
create your own division procedure using the other avaible instructions. This is completely do-able of course,
but could potentially be challanging for those without a �rm handle on bitwise operations. One of the most
useful features of the mathematical instructions of this architecture is that they have built in conditional
capabilities. So, for example, if in pseudocode you wanted to increment a variable by 10 if it was under
100, that'd require one compare, one jump, and an add instruction in x86 assmebly. To do this in ARMv7
assembly it would take two lines and no jumps. A simple �CMP r0, #100� with �ADDLO r0, #10� solves
the issue very succintly and e�ciently.

Jumping and Looping Constructs

Jumping in ARMv7 uses a di�erent instruction name (Bxx) with fewer conditional branching options, but
behaves exactly the same as x86. To do an unconditional branch, all ones needs to do it use the instruction
�B� and then the label name [Clements, 2014]. To perform a conditional jump, �CMP� can be used or an �S�
placed in the instruction you would like the create cpu �ags for before using a conditional such as �BNE�,
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which stands for �break if not equal�. Since the �S� �ag must be appended manually, there is a potential
for major code malfunction over a missed letter. Therefore, programming in assembly for ARMv7 requires
a bit more detail and bookkeeping than IA32. Looping must be done using status �ags on an instruction
or from a compare, paired with a branch. There is no built in looping construct or count register, so the
programmer has free reign to choose these as they see �t.

Procedures

The way procedures are done vaguely resembles x86, though without all the nice wrappers and macros
and a few modi�cations. Calling a procedure is as simple as using the branch instruction �BL� (branch to
subroutine) and a standard label name [Clements, 2014]. When �BL� is used, the return address is stored
in a dedicated link register (lr), as opposed to getting pushed onto the stack, and when the programmer is
ready to return to that address they must pass the link register back to the program counter by using �MOV
PC, lr�. Arguments can still be passed to the subroutines using registers, since there are actually enough for
it not to pose as much of a problem, but arguments can also still be passed using the stack if needed.

The Stack

The ARMv7 stack grows downwards in memory and is used for basically the same purposes as its x86
counterpart and is stored in r13 [Clements, 2014]. Pushing and popping the stack is done using the normal
store and load commands that are used with all other registers and memory spaces. Since there is no
dedicated push and pop instruction to use, a programmer using the stack in ARM has to manually keep
track of incrementing and decrementing the stack pointer at all times, as the x86 instruction took care of that
for us. It's uses are still identical to that of x86; storing subroutine return addresses, providing temporary
storage, and passing parameters to subroutines.

Notable Features

NEON SIMD (MPE)

These architecture extension allow interfacing with the on-chip media processing device which allows for
hardware audio and video processing and decoding without the need for an o�-die co-processor [Limited,
2010]. This device can also be used as a general purpose digital signal processor when not used for it's
optimized media applications.

Thumb2 Extensions

Thumb2 extensions are requiered extensions for ARMv7 assembly, and add the ability to minimize code
for size by using a combination of 16 and 32-bit instructions [Limited, 2010]. This can result in a 40%
decrease in program size while only minimally decreasing e�ciency [Ryzhyk, 2006]. This also enables the
sofware-�oating point linkage to maintain reverse compatiblity with older generation processors without an
FPU.

Performance Notes

RISC vs CISC

With RISC laying the foundation for this artchitecture, there is the possiblity for code written to be more
e�cient than for CISC counterparts due to shorter pipelines and reduced cycles per instruction. However,
it is also very easy for a programmer to make code that would be one instruction in CISC take signi�cantly
longer on this RISC architecture if they do not have good optimization skills or enough time to optimize
their code throughly.
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Number of Registers

The large number of usable registers can greatly improve the processing time for code executed in the ARMv7
architecture. Rather than having to constantly use the stack for passing parameters for procedures, or doing
a signi�cant amount of memory manipulation to save register data as is the case with x86, the programmer
can instead use registers for as much of their coding as possible. Since fewer memory accesses will be made,
the overall execution time will be signi�cantly reduced.

Enhanced Math Instructions

The fact that most math operations can have every operand, input, and destination explicitly speci�ed can
greatly reduce the execution time that would normally be required on x86 for setting up speci�c registers
with their required values and purposes. When this is then paired with single instruction conditional math
statements, operations that would require many lines of code for x86 assembly can be optimized down only
a fraction of that for ARM, meaning fewer clock cycles for overall execution.

Sample Programs

Factorial

This program loops an array containing �ve elements and multiplies them together essentially calculating
the factorial of the largest number with the current array. It's very easy to see how ARMv7 is more �exible
in the registers it is alllowed to use for this operation, and does so in fewer lines of code even without writing
the value to the screen.

Intel x86

; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
TITLE Fac t o r i a l (main . asm)
; Author : Corwin Perren
; Date : 3/13/2014
; Desc r ip t i on :
; This program runs through an array and mu l t i p l i e s each value un t i l a l l
; array e lements have been i t e r a t e d through
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;

INCLUDE Irv in e32 . inc

. data
Array DWORD 1 ,2 ,3 ,4 ,5 ; Array with f i v e va lue s

. code

main PROC
c ld ; ; ; ; Set d i r e c t i o n forward
mov e s i , OFFSET Array ; ; ; ; Point e s i to o f f s e t f o r array
mov ecx , LENGTHOF Array ; ; ; ; Set loop counter to l ength o f array
mov ebx , 1 ; ; ; ; Set s t o rage reg to 1 so i n i t i a l mu l t i p l i c a t i o n works

MultLoop :
lodsd ; ; ; ; Load cur rent array value in to eax
mul ebx ; ; ; ; Mult ip ly eax by ebx
mov ebx , eax ; ; ; ; Store r e s u l t in ebx
loop MultLoop ; ; ; ; Loop un t i l array empty
mov eax , ebx ; ; ; ; Move f i n a l va lue in to eax f o r p r i n t i n g
c a l l WriteDec ; ; ; ; Pr int to s c r e en
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c a l l C r l f ; ; ; ; Pr int l i n e
e x i t ; ; ; ; Exit program

main ENDP
END main

ARMv7

AREA Facto r i a l , CODE, READONLY
ENTRY

Star t
ADR r0 , Array ; Point to address o f array
MOV r1 , #5 ; Set up a loop counter f o r array
MOV r2 , #1 ; Set f i r s t va l to one so math works

MultLoop
LDR r3 , [ r0 ] ; Put cur rent array value in to r3
MUL r2 , r3 , r2 ; Mult ip ly array va l by s to r ed product
ADD r0 , r0 ,#4 ;Move forward by one array element
SUBS r1 , r1 ,#1 ; Decrease loop counter
BNE MultLoop ; repeat un t i l a l l e lements added

; F ina l va lue in r2 (0 x78 == 120 == 5 ! )

Array DCD 1 ,2 ,3 ,4 , 5 ; Array to hold va lue s
END

Constrain using procedures and a stack argument

This program takes a value and passes it through a procedure which constrains it to a speci�c range. The
parameters are passed using the stack to show the di�erences and the alternatve forms of procedures are
also shown.

Intel x86

; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
TITLE Constra in (main . asm)
; Author : Corwin Perren
; Date : 3/13/2014
; Desc r ip t i on :
; This program runs pas s e s an argument v ia s tack to a cons ta in func t i on
; based o f f o f hobby R/C pu l s e t imes (1000−2000 microseconds )
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;

INCLUDE Irv in e32 . inc

. data
ParamToConstrain DWORD 2500 ; ; ; ; Value to con s t r a i n
UpperVal DWORD 2000 ; ; ; ; Upper l im i t f o r c on s t r a i n t
LowerVal DWORD 1000 ; ; ; ; Lower l im i t f o r c on s t r a i n t

. code

Constra in PROC
mov ebp , esp ; ; ; ; Move stack po in t e r i n to ebp
mov eax , [ ebp+4] ; ; ; ; Move the param to con s t r a i n in to eax
cmp eax , [ ebp+8] ; ; ; ; Compare param to con s t r a i n to upper va l
j g I sGreate r ; ; ; ; I f i t ' s g reate r , jump to i s g r e a t e r
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cmp eax , [ ebp+12] ; ; ; ; I f i t ' s not g r e a t e r check i f i t ' s lower than lower va l
j g NoChange ; ; ; ; I f i t ' s not lower , jump to end o f procedure
mov eax , [ ebp+12] ; ; ; ; I f lower , move lower con s t r a i n value in to eax
mov [ ebp+4] , eax ; ; ; ; Replace va lue to con s t r a i n with eax
jmp NoChange ; ; ; ; Just to end o f procedure

I sGreate r :
mov eax , [ ebp+8] ; ; ; ; I f g reate r , move upper va l i n to eax
mov [ ebp+4] , eax ; ; ; ; Replace va lue to con s t r a i n with eax

NoChange :
r e t ; ; ; ; Return from procedure

Constra in ENDP

main PROC
push LowerVal ; ; ; ; Push lower c on s t r a i n t to the s tack
push UpperVal ; ; ; ; Push upper c on s t r a i n t to the s tack
push ParamToConstrain ; ; ; ; Push value onto the s tack
c a l l Constra in ; ; ; ; Constra in t h i s va lue
pop eax ; ; ; ; Pop cons t ra ined value o f f the s tack
add esp , 8 ; ; ; ; Clean up stack
c a l l WriteDec ; ; ; ; Write va lue to s c r e en
c a l l C r l f ; ; ; ; Pr in t s a new l i n e
e x i t ; ; ; ; Ex i t s the program

main ENDP
END main

ARMv7

AREA ConstrainProg , CODE, READWRITE
ENTRY

Star t
ADR sp , Base ; Point to the base o f the s tack
LDR r0 , LowerVal ; Load the lower va lue in to r0
LDR r1 , UpperVal ; Load the upper value in r1
LDR r2 , ParamToConstrain ; Load the value to con s t r a i n in to r2
STR r0 , [ sp ,#−4] ; Load r0 onto the s tack po in t e r
STR r1 , [ sp ,#−4] ; Load r1 onto the s tack po in t e r
STR r2 , [ sp ,#−4] ; Load r2 onto the s tack po in t e r
BL Constra in ; Ca l l c on s t r a i n procedure
LDR r2 , [ sp ] ; Load cons t ra ined value back in to r2
; r2 should now conta in 2000
ADD sp , sp , #8 ; Fix the s tack po in t e r

Constra in
STR LR, [ sp , #−4] ; Store re turn address
LDR r5 , [ sp , #12] ; Ret r i eve lower
LDR r4 , [ sp , #8] ; Ret r i eve upper
LDR r3 , [ sp , #4] ; Ret r i eve va l to con s t r a i n
CMP r3 , r4 ; Check i f h igher than max
LDRHI r3 , [ sp , #8] ; I f so , load max
CMP r3 , r5 ; Check i f lower than min
LDRLO r3 , [ sp , #12] ; I f so , load min
STR r3 , [ sp , #4] ; Overwrite cons t ra ined va l
LDR PC, [ sp ] , #4 ; Return from procedure

ParamToConstrain DCD 2200 ; Value to con s t r a i n
UpperVal DCD 2000 ; Value to con s t r a i n
LowerVal DCD 1000 ; Value to con s t r a i n
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Base DCD 0xAAAAAAAA ; Used as a marker in memory
END
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