Working readout for beacon frequency thanks to Dylan!

This commit is contained in:
2018-08-09 22:21:18 -07:00
parent d9e8458797
commit c3a98cc0a7
6 changed files with 293 additions and 202 deletions

View File

@@ -1,128 +0,0 @@
from __future__ import division
from numpy.fft import rfft
from numpy import argmax, mean, diff, log
from matplotlib.mlab import find
from scipy.signal import blackmanharris, fftconvolve
from numpy import polyfit, arange
def freq_from_crossings(sig, fs):
"""
Estimate frequency by counting zero crossings
"""
# Find all indices right before a rising-edge zero crossing
indices = find((sig[1:] >= 0) & (sig[:-1] < 0))
# Naive (Measures 1000.185 Hz for 1000 Hz, for instance)
# crossings = indices
# More accurate, using linear interpolation to find intersample
# zero-crossings (Measures 1000.000129 Hz for 1000 Hz, for instance)
crossings = [i - sig[i] / (sig[i+1] - sig[i]) for i in indices]
# Some other interpolation based on neighboring points might be better.
# Spline, cubic, whatever
return fs / mean(diff(crossings))
def freq_from_fft(sig, fs):
"""
Estimate frequency from peak of FFT
"""
# Compute Fourier transform of windowed signal
windowed = sig * blackmanharris(len(sig))
f = rfft(windowed)
# Find the peak and interpolate to get a more accurate peak
i = argmax(abs(f)) # Just use this for less-accurate, naive version
true_i = parabolic(log(abs(f)), i)[0]
# Convert to equivalent frequency
return fs * true_i / len(windowed)
def freq_from_autocorr(sig, fs):
"""
Estimate frequency using autocorrelation
"""
# Calculate autocorrelation (same thing as convolution, but with
# one input reversed in time), and throw away the negative lags
corr = fftconvolve(sig, sig[::-1], mode='full')
corr = corr[len(corr)//2:]
# Find the first low point
d = diff(corr)
start = find(d > 0)[0]
# Find the next peak after the low point (other than 0 lag). This bit is
# not reliable for long signals, due to the desired peak occurring between
# samples, and other peaks appearing higher.
# Should use a weighting function to de-emphasize the peaks at longer lags.
peak = argmax(corr[start:]) + start
px, py = parabolic(corr, peak)
return fs / px
def freq_from_HPS(sig, fs):
"""
Estimate frequency using harmonic product spectrum (HPS)
"""
windowed = sig * blackmanharris(len(sig))
from pylab import subplot, plot, log, copy, show
# harmonic product spectrum:
c = abs(rfft(windowed))
maxharms = 8
subplot(maxharms, 1, 1)
plot(log(c))
for x in range(2, maxharms):
a = copy(c[::x]) # Should average or maximum instead of decimating
# max(c[::x],c[1::x],c[2::x],...)
c = c[:len(a)]
i = argmax(abs(c))
true_i = parabolic(abs(c), i)[0]
print 'Pass %d: %f Hz' % (x, fs * true_i / len(windowed))
c *= a
subplot(maxharms, 1, x)
plot(log(c))
show()
def parabolic(f, x):
"""Quadratic interpolation for estimating the true position of an
inter-sample maximum when nearby samples are known.
f is a vector and x is an index for that vector.
Returns (vx, vy), the coordinates of the vertex of a parabola that goes
through point x and its two neighbors.
Example:
Defining a vector f with a local maximum at index 3 (= 6), find local
maximum if points 2, 3, and 4 actually defined a parabola.
In [3]: f = [2, 3, 1, 6, 4, 2, 3, 1]
In [4]: parabolic(f, argmax(f))
Out[4]: (3.2142857142857144, 6.1607142857142856)
"""
xv = 1 / 2. * (f[x - 1] - f[x + 1]) / (f[x - 1] - 2 * f[x] + f[x + 1]) + x
yv = f[x] - 1 / 4. * (f[x - 1] - f[x + 1]) * (xv - x)
return (xv, yv)
def parabolic_polyfit(f, x, n):
"""Use the built-in polyfit() function to find the peak of a parabola
f is a vector and x is an index for that vector.
n is the number of samples of the curve used to fit the parabola.
"""
a, b, c = polyfit(arange(x - n // 2, x + n // 2 + 1), f[x - n // 2:x + n // 2 + 1], 2)
xv = -0.5 * b / a
yv = a * xv ** 2 + b * xv + c
return (xv, yv)